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1 Introduction

e High-resolution (convective-scale) NWP models are be-
coming the norm: more dynamical processes such as con-
vection, cloud formation, & small-scale gravity waves, are
resolved explicitly.

e DA techniques need to evolve in order to keep up with the
developments in high-resolution NWP.

e It may be unfeasible (and even undesirable) to investigate
the potential of DA schemes on state-of-the-art NWP mod-
els. Idealised models have been employed that:

- capture some fundamental features of dynamics,
- are computationally inexpensive to implement, and
- allow an extensive investigation of the proposed scheme.

e A hierarchy of “toy” models, e.g., Lorenz" model (L2005),
QG/BV model have been employed in DA, including:
- a “convective-scale” 1.5D shallow-layer model (Kent et al.
2015, this DA workshop).

e Here, we propose to add a 3D rotating convection model to
this hierarchy:.

2 Boussinesq Parent Model

e Following Julien et al. (2006), rotating Boussinesq equa-
tions are scaled with dp*, §p* buoyancy B = g|dp*|/p;, hori-
zontal and vertical length scales L and L, (ratio A, = L./L),
and velocity scales U and L.U/L.

¢ The resulting dimensionless model reads:
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e with velocity u = (uy,w), buoyancy b = —gp/p,, back-
ground density p(z),

e Rossby Ro = U/(2QL), Froude Fr = U/(NyL) (buoy-
ancy frequency Np), Euler P = 6p*/(p:U?), buoyancy I' =
BL/U? and Reynolds Re and Peclet Pe numbers.

3 3D Model of Rotationally Con-
strained Convection

e Using a multi-scale, singular expansion in Ro = € with P =
1/ T =T/e,A. = O(1), TFr? = O(1), b — by + €by, p — ep,
0. — €0, a non-hydrostatic rotationally constrained model
Julien et al. (2006) derive is:
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e with horizontal Laplacian V3 = 02 + 0., (leading order)
vertical velocity wy,

e slowly evolving or constant buoyancy by, next order buoy-

ancy by, p = v, Jacobian J(¢,() = 0,40,( — 0,(0, etc.,
and

¢ underlined terms denote the dissipative, viscous terms (or
turbulent counterparts).

e We consider a cylindrical domain D with radius =
ry/x?+y? € |0, R] and, on average, a vertical coordinate
z € [0, Hr] for fixed R and Hr.

4 3D Baroclinic Quasigeostrophy

e Ignoring the underlined dissipative terms in (2), strati-
fied quasigeostrophy arrives when hydrostatic balance is
assumed (equating the twice underlined terms), and the

buoyancy equation is used to eliminate wy o b; in the ver-
tical vorticity equation:
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e with quasigeostrophic potential vorticity g.

5 Linear Dispersion Relations

Using oc e!ketlytm==wt) with 2 = k% + 12, for by constant, disper-
sion relations for the 3D parent Boussinesq, the reduced rota-
tion constrained model, and the quasi-geostrophic equations

are:
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e Boussinesq: w

e rotation constrained: w? = m?/(k*Ro?) + (—p'/Fr?), arising
when m < k, so for anisotropic convection:

Fig. 1. From Sprague et al. [5]: temperature/buoyancy anomaly.
Their Pr = 7, Ra = 40.

e quasigeostrophy: w = 0.

6 Hamiltonian Formulation

e In the inviscid case, the Hamiltonian/energy of (2) is:

A~

1 I
’H:—/ V| +wi + — b dedydz  (4)
5 D\ HY|” + w; 5l — oy
upon using the boundary conditions ¢ = 0atr = R, wy =0
at z = O, HT.

e Variations of the Hamiltonian are:
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using the restriction on the functional derivatives ¢H /6 =
Oatr = Rand 6H/dwy = 0at z =0, Hr.

e A co-symplectic formulation follows from (2) and (5a):
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e Underlined terms are null. Potential vorticity (Julien et al.
2006) is conserved.

7 Numerical Weak Formulation

e Consequently, a weak formulation and candidate Hamilto-
nian formulation reads
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e By using (bb)) and the restriction on the functional deriva-
tives 6H/0( = 0atr = R and dH /dwy = 0 at z = 0, Hy (for
the inviscid case), the Hamiltonian formulation (7)) yields
the (inviscid) equations of motion (2)), essentially by revers-
ing its construction.

e Again ( = V*) must be defined and used in separation.

e Clearly is skew-symmetric and Jacobi’s identity
{FAG H}} + {H,{F,G}} + {G,{H,F}} = 0 wverified

(doubly-periodic horizontal domain).

o If we take variations of F as arbitrary test functions, then
serves as (finite element) weak formulation.

8 Phase Changes: Iodine Cycle

e Consider a container with dry air at room temperature and
a small mass fraction of solid iodine particles on the bot-
tom.

e Heat and keep the bottom above the iodine sublimation
temperature 7T, = 386K.

e Keep the top below T' < T's with a teflon surface repelling
iodine solidification.

e Rotating Rayleigh-Bénard convection set-up.

e Total dimensional density is related to temperature as fol-
lows: p = po(1 — arT).

e A bulk two-state moisture model is adopted with iodine
vapor ¢, and iodine snow/precipitate ¢;, cf. similar ap-
proach in Zerroukat & Allen.

9 Future Work: Conceptual Labo-
ratory Experiment & DA
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Fig. 2. Left: Sketch of experimental set-up for rotating Rayleigh-
Bénard convection with iodine phase changes. Right: sample of io-
dine vapor.
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